科学家开发新型CRISPR系统 可治疗肥胖症
昨日,顶尖学术期刊《科学》在线发表了一篇引起诸多海外媒体关注的论文。来自加州大学旧金山分校(UCSF)的一支团队证实,他们能够使用先进的CRISPR系统,成功让小鼠瘦身。更关键的是,这种CRISPR系统无需对基因组进行剪切,大大提升了其应用的安全性。
我们知道,CRISPR系统经常被用于基因编辑。难道肥胖还和基因有关吗?还真有!研究人员们指出,有两条基因对人类的食欲有重要的调节作用,它们分别是SIM1和MC4R,都在中枢神经系统中表达。
在正常人的体内,突变偶有发生。通常情况下,当一条基因出现突变,丧失活性时,另一个具有活性的基因拷贝,依旧可以正常工作,维持人体的生理功能不受影响。但当一条SIM1或MC4R基因丧失功能时,即便另一个基因拷贝依旧具有活性,依然会引起严重的后果。这是因为剩下那一条基因所产生的蛋白量,不足以弥补突变基因带来的短缺。在生物学上,这一现象也被称为单倍剂量不足(haploinsufficiency)。于是,人们开始控制不了自己的食欲,拼命大吃大喝,肥胖也随之而来,造成健康隐患。
面对这一现象,科学家们提出了一个简单的解决方案。这些肥胖患者之所以控制不了食欲,不就是因为SIM1或MC4R的表达产物不足么?如果我们能提高这些基因的表达剂量,不就能重新控制食欲了吗?
利用CRISPR系统,UCSF的科学家们做到了。首先,他们开发了一种叫做CRISPRa的新技术,在CRISPR后面的a代表“激活”的意思。与常规所见到的CRISPR技术不同,这种新开发的技术不会对基因组进行剪切。相反,它能寻找到特定的基因,并增强它的表达。按设想,只要能激活正常的SIM1或MC4R基因,就有望让肥胖小鼠减肥。
CRISPRa有望增强特定基因的表达(图片来源:参考资料[1])
在小鼠实验中,这一设想得到了证实。在一半SIM1基因或MC4R基因丧失功能的小鼠模型中,科学家们使用了这款CRISPRa系统,想要提高正常SIM1或MC4R基因的活性。可喜的是,测试组的小鼠,其体内的SIM1或MC4R蛋白果然恢复到了野生型对照组的正常水平。更关键的是,这些蛋白水平的恢复,的确能起到控制食欲,预防肥胖的效果。
和肥胖小鼠(左)相比,接受了CRISPRa的小鼠(中),看起来和野生型(右)差不多(图片来源:参考资料[1])
“这些结果非常显著!缺乏一条SIM1基因的小鼠在4周大的时候接受了CRISPRa的注射,随后就能保持普通小鼠一样的体型,”本研究的第一作者Navneet Matharu博士说道:“相反,没有接受CRISPRa注射的小鼠管不住自己的嘴巴,在6周大的时候就开始变胖。到了10周大时,它们即便吃的是普通食物,也出现了严重的肥胖。”
数据分析表明,相比对照组,CRISPRa能减少肥胖小鼠30%-40%的体重!而且研究人员们观察了长达10个月的时间,发现只需一次CRISPRa治疗,就能起到长效的体重控制效果。
研究人员们指出,他们的结果具有非常重要的意义。首先,这种技术能够用于其他疾病。据估计,有600多条基因会出现“单倍剂量不足”的现象,带来疾病。而CRISPRa有望给罹患这些疾病的患者带来转机。其次,虽然CRISPR系统有潜在的脱靶作用,但只要不切开基因组,就不会对基因组带来永久性的改变。第三,本研究表明CRISPRa可以针对启动子或增强子区域,而不直接针对基因本身。因此,它有望将作用局限于特定的组织,从而进一步减小风险。
本研究的通讯作者Nadav Ahituv教授(图片来源:UCSF)
“尽管这项研究关注肥胖,我们相信这一系统能被用于任何一种缺乏单基因拷贝导致的疾病,”本研究的通讯作者Nadav Ahituv教授说道:“我们的结果对多种疾病具有巨大的治疗潜力,我们能带来(治疗上的)收益,而不用对基因组进行任何编辑。”
参考资料:
[1] Navneet Matharu et al。, (2018), CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency, Science, DOI: 10.1126/science.aau0629
[2] CRISPR joins battle of the bulge, fights obesity without edits to genome, Retrieved December 14, 2018, from https://www.eurekalert.org/pub_releases/2018-12/uoc--cjb121118.php
脂肪组织留恋“肥胖” 非脑细胞也有“记忆”
原标题:脂肪组织留恋“肥胖” 非脑细胞也有“记忆”
长期以来,人们普遍认为学习和记忆是大脑的“独门绝技”。然而,美国纽约大学科学家开展的一项研究显示,身体中的神经组织和肾脏组织细胞也具有类似记忆能力。相关论文日前发表于《自然·通讯》。
无独有偶,瑞士和美国科学家也在另一项研究中发现,脂肪组织细胞也能保留“肥胖记忆”。即使体重急剧下降,“肥胖记忆”也仍然存在。相关论文发表于《自然》。
复旦大学附属华山医院神经内科教授郁金泰日前接受科技日报记者采访时说:“这两项研究极具创新性。它们都发现非脑细胞中存在着特定的基因表达模式,控制着对外界反应刺激的应答,即保留‘记忆’功能。这些发现不仅有助于我们深入理解细胞记忆的生物学基础,也为神经退行性疾病的研究提供了新视角。”
人类认知功能的“明珠”
“记忆是人类认知功能‘皇冠上的明珠’,引领着我们从过往的点点滴滴中汲取智慧,助力我们在纷繁复杂的世界中行稳致远。”郁金泰说。
郁金泰解释,记忆一般被分为三部分:感觉记忆、长期记忆和工作记忆。感觉记忆指通过视觉、听觉、嗅觉、触觉和味觉五种感官对世界的感知而形成的短暂记忆,主要存储于感觉(如视觉)皮层中。它如晨曦中的露珠,转瞬即逝。长期记忆包括语义记忆、情景记忆、情感记忆等,或深或浅地烙印在内侧颞叶和海马等脑区,持续时间从几分钟到数十年甚至一生。工作记忆则如同笔记,暂时保留有限数量的信息,以备立即查阅、调用,对学习、解决问题和其他心理过程至关重要。“我们脑海中闪过的每一个念头,都是工作记忆,而前额叶皮层在工作记忆形成和执行功能中起核心作用。”郁金泰说。
谈及记忆的工作原理,郁金泰进一步解释:“记忆过程通常囊括编码、存储、巩固、检索等多个阶段,每个环节都充满了奥秘。”编码就像翻译,将感官信息转化为神经信号,主要在大脑皮层中进行。存储指将编码后的信息长期保存在大脑中,这一过程与神经元之间的突触可塑性变化密切相关。突触可塑性是大脑学习和记忆的基础,它让大脑能够灵活调整神经元之间的连接方式,形成新的记忆和技能。巩固,则指将短期、不稳定的记忆转变为长期稳定记忆。这需要基因表达和新蛋白质的合成共同作用。检索指从大脑中提取存储信息的过程,如同寻宝游戏,需要多个脑区协同工作。
郁金泰分析:“记忆与大脑之间的关系,涉及多个脑区和神经网络的协同工作,每一个细节都充满了精妙智慧。尽管我们在理解记忆和认知背后的细胞和分子过程方面取得了长足进步,但记忆形成的奥秘以及记忆障碍的神经生理机制,仍需进一步探索。”
记忆不只存在于大脑
在《自然·通讯》发表的论文中,美国纽约大学副教授尼古拉·库库什金及其团队,研究了分别来自神经组织和肾脏组织的两种人类非脑部细胞。他们让这些非脑细胞接触不同模式的化学信号,模拟人类学习新信息时脑细胞接触化学物质神经递质的过程,以此来研究非脑细胞随时间推移的适应性变化。
他们发现,这些非脑细胞能够识别化学脉冲的重复模式。而且,当脉冲以间隔方式发送时,会比一次性发送同等数量的脉冲更强烈地激活“记忆基因”ERK和CREB,激活的持续时间也更长。
库库什金介绍,这两种非脑细胞的“行为”与大脑中神经元在学习和记忆过程中的表现如出一辙,表明它们同样具备学习和记忆功能。这意味着,记忆可能并非大脑所独有,或许是所有细胞的基本特性。
郁金泰认为,这项研究扩展了人们对细胞的认知:所有细胞都必须从环境信号中提取显著模式并将其转化为稳定、长期的反应。
在发表于《自然》的研究中,瑞士苏黎世联邦理工学院生物学家劳拉·辛特等研究人员,采集了20名肥胖患者减重前后的白色脂肪组织样本,以及18名从未肥胖过、正常体重者的白色脂肪组织样本,并使用单核RNA测序对样本进行了分析。团队对瘦小鼠、胖小鼠和肥胖后减重的小鼠也开展了类似研究。
结果发现,在体重明显减轻后,人和小鼠脂肪组织中许多细胞类型的基因表达依然保持着肥胖时期的特征,即形成了“肥胖记忆”。尽管个体体重显著下降,细胞内的“肥胖记忆”却如影随形。而且,这些持久的表观遗传标记使脂肪细胞在再次暴露于肥胖环境时,更容易激活与炎症和代谢失调相关的基因表达,从而使人面临肥胖“噩梦”再次来袭的风险。
此研究论文合著者、瑞士苏黎世联邦理工学院表观基因组专家费迪南德·冯·迈恩认为,脂肪细胞的这种“肥胖记忆”主要基于表观遗传发生的稳定变化,但他们目前尚不清楚脂肪细胞“记忆”肥胖的时间会持续多久。
为疾病治疗打开思路
这两项研究不仅为理解记忆的工作原理开辟了新路径,也有望为多种疾病的治疗提供新策略。
库库什金认为,人们可利用胰腺对过去饮食模式的“记忆”,来保持正常的血糖水平;同样,人类也应该重视癌细胞对化疗模式的“记忆”等。
郁金泰进一步阐述:“这两项研究都揭示了非脑细胞中存在特定的基因表达模式,这些模式就像细胞的‘开关’,控制着它们对环境信号刺激的应答。如果人们能够调控这些关键基因的表达模式,或许能为预防和治疗相关疾病提供新策略。”
迈恩等人也坦言,他们的研究显示,减肥之路并非坦途。尽管这一事实令人“扎心”,但从中也可以看到避免减肥反弹的方向。未来,研究人员有可能研发出消除脂肪细胞“肥胖记忆”的新药物,让减肥“一劳永逸”。
郁金泰认为,这两项研究还为神经退行性疾病的研究打开了新思路。神经退行性疾病是指由于神经元及其髓鞘的丧失或功能退化,导致中枢神经系统功能逐渐丧失的一类疾病,包括阿尔茨海默病、帕金森病等。在与神经退行性疾病相关的记忆障碍中,可能存在一些关键基因,它们与记忆的形成、巩固和提取过程息息相关。“如果我们能在疾病早期及时调节这些基因的表达模式,或许就能预防或延缓记忆障碍的进一步恶化,为患者带来新的曙光。”郁金泰说。(记者 刘 霞)
来源:科技日报
脂肪组织留恋“肥胖” 非脑细胞也有“记忆”
来源:科技日报
原标题:脂肪组织留恋“肥胖” 非脑细胞也有“记忆”
长期以来,人们普遍认为学习和记忆是大脑的“独门绝技”。然而,美国纽约大学科学家开展的一项研究显示,身体中的神经组织和肾脏组织细胞也具有类似记忆能力。相关论文日前发表于《自然·通讯》。
无独有偶,瑞士和美国科学家也在另一项研究中发现,脂肪组织细胞也能保留“肥胖记忆”。即使体重急剧下降,“肥胖记忆”也仍然存在。相关论文发表于《自然》。
复旦大学附属华山医院神经内科教授郁金泰日前接受科技日报记者采访时说:“这两项研究极具创新性。它们都发现非脑细胞中存在着特定的基因表达模式,控制着对外界反应刺激的应答,即保留‘记忆’功能。这些发现不仅有助于我们深入理解细胞记忆的生物学基础,也为神经退行性疾病的研究提供了新视角。”
人类认知功能的“明珠”
“记忆是人类认知功能‘皇冠上的明珠’,引领着我们从过往的点点滴滴中汲取智慧,助力我们在纷繁复杂的世界中行稳致远。”郁金泰说。
郁金泰解释,记忆一般被分为三部分:感觉记忆、长期记忆和工作记忆。感觉记忆指通过视觉、听觉、嗅觉、触觉和味觉五种感官对世界的感知而形成的短暂记忆,主要存储于感觉(如视觉)皮层中。它如晨曦中的露珠,转瞬即逝。长期记忆包括语义记忆、情景记忆、情感记忆等,或深或浅地烙印在内侧颞叶和海马等脑区,持续时间从几分钟到数十年甚至一生。工作记忆则如同笔记,暂时保留有限数量的信息,以备立即查阅、调用,对学习、解决问题和其他心理过程至关重要。“我们脑海中闪过的每一个念头,都是工作记忆,而前额叶皮层在工作记忆形成和执行功能中起核心作用。”郁金泰说。
谈及记忆的工作原理,郁金泰进一步解释:“记忆过程通常囊括编码、存储、巩固、检索等多个阶段,每个环节都充满了奥秘。”编码就像翻译,将感官信息转化为神经信号,主要在大脑皮层中进行。存储指将编码后的信息长期保存在大脑中,这一过程与神经元之间的突触可塑性变化密切相关。突触可塑性是大脑学习和记忆的基础,它让大脑能够灵活调整神经元之间的连接方式,形成新的记忆和技能。巩固,则指将短期、不稳定的记忆转变为长期稳定记忆。这需要基因表达和新蛋白质的合成共同作用。检索指从大脑中提取存储信息的过程,如同寻宝游戏,需要多个脑区协同工作。
郁金泰分析:“记忆与大脑之间的关系,涉及多个脑区和神经网络的协同工作,每一个细节都充满了精妙智慧。尽管我们在理解记忆和认知背后的细胞和分子过程方面取得了长足进步,但记忆形成的奥秘以及记忆障碍的神经生理机制,仍需进一步探索。”
记忆不只存在于大脑
在《自然·通讯》发表的论文中,美国纽约大学副教授尼古拉·库库什金及其团队,研究了分别来自神经组织和肾脏组织的两种人类非脑部细胞。他们让这些非脑细胞接触不同模式的化学信号,模拟人类学习新信息时脑细胞接触化学物质神经递质的过程,以此来研究非脑细胞随时间推移的适应性变化。
他们发现,这些非脑细胞能够识别化学脉冲的重复模式。而且,当脉冲以间隔方式发送时,会比一次性发送同等数量的脉冲更强烈地激活“记忆基因”ERK和CREB,激活的持续时间也更长。
库库什金介绍,这两种非脑细胞的“行为”与大脑中神经元在学习和记忆过程中的表现如出一辙,表明它们同样具备学习和记忆功能。这意味着,记忆可能并非大脑所独有,或许是所有细胞的基本特性。
郁金泰认为,这项研究扩展了人们对细胞的认知:所有细胞都必须从环境信号中提取显著模式并将其转化为稳定、长期的反应。
在发表于《自然》的研究中,瑞士苏黎世联邦理工学院生物学家劳拉·辛特等研究人员,采集了20名肥胖患者减重前后的白色脂肪组织样本,以及18名从未肥胖过、正常体重者的白色脂肪组织样本,并使用单核RNA测序对样本进行了分析。团队对瘦小鼠、胖小鼠和肥胖后减重的小鼠也开展了类似研究。
结果发现,在体重明显减轻后,人和小鼠脂肪组织中许多细胞类型的基因表达依然保持着肥胖时期的特征,即形成了“肥胖记忆”。尽管个体体重显著下降,细胞内的“肥胖记忆”却如影随形。而且,这些持久的表观遗传标记使脂肪细胞在再次暴露于肥胖环境时,更容易激活与炎症和代谢失调相关的基因表达,从而使人面临肥胖“噩梦”再次来袭的风险。
此研究论文合著者、瑞士苏黎世联邦理工学院表观基因组专家费迪南德·冯·迈恩认为,脂肪细胞的这种“肥胖记忆”主要基于表观遗传发生的稳定变化,但他们目前尚不清楚脂肪细胞“记忆”肥胖的时间会持续多久。
为疾病治疗打开思路
这两项研究不仅为理解记忆的工作原理开辟了新路径,也有望为多种疾病的治疗提供新策略。
库库什金认为,人们可利用胰腺对过去饮食模式的“记忆”,来保持正常的血糖水平;同样,人类也应该重视癌细胞对化疗模式的“记忆”等。
郁金泰进一步阐述:“这两项研究都揭示了非脑细胞中存在特定的基因表达模式,这些模式就像细胞的‘开关’,控制着它们对环境信号刺激的应答。如果人们能够调控这些关键基因的表达模式,或许能为预防和治疗相关疾病提供新策略。”
迈恩等人也坦言,他们的研究显示,减肥之路并非坦途。尽管这一事实令人“扎心”,但从中也可以看到避免减肥反弹的方向。未来,研究人员有可能研发出消除脂肪细胞“肥胖记忆”的新药物,让减肥“一劳永逸”。
郁金泰认为,这两项研究还为神经退行性疾病的研究打开了新思路。神经退行性疾病是指由于神经元及其髓鞘的丧失或功能退化,导致中枢神经系统功能逐渐丧失的一类疾病,包括阿尔茨海默病、帕金森病等。在与神经退行性疾病相关的记忆障碍中,可能存在一些关键基因,它们与记忆的形成、巩固和提取过程息息相关。“如果我们能在疾病早期及时调节这些基因的表达模式,或许就能预防或延缓记忆障碍的进一步恶化,为患者带来新的曙光。”郁金泰说。(记者 刘 霞)